
641 

Acta Co'st. (1996). D52, 641-646 

A Self-Validation Technique for Protein Structure Refinement: the Extended Hamilton Test 

ALESSIA BACCHI,  VICTOR S. LAMZ1N AND KEITH S. WII .SON 

European Molecular Biology Laboratory (EMBL), c/o DESE Notkestrasse 85, 22603 Hamburg, Germany. 
E-mail: victor@ embl-hamburg.de 

(Received 21 August 1995: accepted 30 January 1996) 

Abstract 

An extension is proposed for the self-validation Hamil- 
ton test [Hamilton (1965). Acta CO,st. 18, 502-510] 
for crystallographic refinement. The method is based 
on the statistical F test and evaluates the significance 
of the R-factor ratio between two refinement protocols. 
The general case of two refinements carried out with 
different numbers and types of non-linear restraints is 
examined. The restraints are considered as extra observa- 
tions weighted by a coefficient expressing their effective 
number. There exists a restriction on the weighting 
coefficients between the two refinements. An empirical 
method to evaluate the effective number of restraints 
is provided. The method may allow the detection of 
unreasonably tight restraints. The expectation value for 
r.m.s. Rfr~e, given the r.m.s. R, can be estimated. Thus, 
the significance of the observed drop in Rtr~c can be 
assessed. Compared to cross-validation using Rr~e~ 
[Brfinger (1992). Nature (London), 355,472-474] self- 
validation has the advantage that it does not require 
omission of any experimental data. The significance of 
the improvement obtained by moving from isotropic 
to anisotropic description of thermal parameters in the 
refinement of a protein at 1.5 A, resolution is used as an 
example. 

1. Introduction 

1.1. Observations and parameters 

The refinement of a crystal structure is the minimiza- 
tion of the difference between the experimental electron- 
density distribution, obtained by Fourier transformation 
of structure factors derived from observed amplitudes 
and calculated phases, and a model represented by 
a set of variable parameters, which are refined. The 
refinement is typically performed in reciprocal space by 
least-squares minimization of the differences between 
observed and calculated structure factors. In refinement 
any increase in the number of independent parameters 
is reflected in better agreement between model and data, 
at the expense of a loss in the number of ways in which 
experimental errors can be accounted for, i.e. the number 
of degrees of freedom of the refinement defined as the 
number of observations minus the number of parameters 
refined. Since the number of parameters which optimally 
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describe the experimental data is not known a priori, a 
validation procedure is required to avoid overfitting of 
the data. 

This problem is particularly severe for proteins, where 
the number of observations available from the diffraction 
experiment is low with respect to the number of param- 
eters typically used for the description of the structure. 
At a resolution lower than 2.5 A, the number of obser- 
vations no longer exceeds the number of parameters. To 
overcome the problem of low data/parameters ratio, it is 
obligatory to increase the number of degrees of freedom 
of the refinement, either by augmenting the number of 
observations or by decreasing the number of parameters 
describing the model. 

The former condition implies introduction of ad- 
ditional observational equations containing a priori 
information about the model in the form of restraints. 
Typically these are expressed as geometric or energetic 
conditions which the crystallographer might think the 
structure should satisfy (Waser, 1974; Sussman, Hol- 
brook, Church & Kim, 1977; Konnert & Hendrickson, 
1980). Restraints are represented by extra equations in 
the design matrix of the experiment and considered 
as observed data. Examples are: restraining bond 
distances to approach target values derived from the 
examination of accurately determined structures, e.g. 
the Cambridge Structural Database (Allen, Kennard & 
Taylor, 1983); restraining groups to be approximately 
planar (Urzhumtsev, 1991); restraining bonded atoms 
to have similar anisotropic thermal motion along the 
bond direction (Hirshfeld, 1976) or imposing non- 
crystallographic symmetry between chemically identical 
fragments (Bricogne, 1974). During refinement, as 
for X-ray data, restraints are given a weight which 
represents the distribution of parameters anticipated for 
their values. 

The second way to increase the number of degrees of 
freedom of the refinement is to diminish the number 
of refined parameters. This is achieved by constrain- 
ing them to have particular values or to obey exact 
conditions (Prince, Finger & Konnert, 1995). Examples 
are: imposing the space-group crystallographic symme- 
try; introducing H atoms at their calculated positions, 
riding on their carrier atoms; constraining occupancies 
of related complementary disordered atoms to sum up 
to one or constraining isotropic thermal parameters to 
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be equal within a group of atoms. Isotropic refinement 
can be considered as constrained anisotropic refinement, 
with the ellipsoids describing the atomic thermal motion 
constrained to be spheres, reducing the number of atomic 
thermal displacement parameters from six to one. 

Thus, the number of degrees of freedom of the 
refinement can be tuned by varying the number of 
restraints and constraints. It is necessary to ensure that 
this number is the best choice to describe the data, by 
carrying out a validation procedure in parallel with the 
refinement. 

1.2. Cross-  a n d  se l f -va l ida t ion  

Two general kinds of validation methods are self- 
and cross-validation. In self-validation descriptors are 
defined, either in reciprocal or in real space, to assess 
the quality of the refinement procedure. Examples are 
the R factor, 'a sort of average relative discrepancy 
between the observed and calculated values' (Hamilton, 
1964, p. 158), the real-space R factor (Br~indrn & Jones, 
1990), assessment of stereochemistry (Vriend, 1990; 
Laskowski, MacArthur, Moss & Thornton, 1993) and 
maximum-likelihood methods (Bricogne, 1984). 

The most popular cross-validation evaluator in protein 
crystallography is the Rfree factor (Briinger, 1992). This 
is to some extent analogous to full statistical cross- 
validation for assessing the capability of the model to 
reproduce the experimental results and to predict unmea- 
sured data. The rationale in cross-validation methods is 
to split the complete data set into a training set, on which 
the model is built, and a test set, on which the model is 
tested. The procedure is repeated by considering, in turn, 
every data subset as the test set, and finally the global 
unbiased estimate of the model is obtained. It is often 
not possible to test the model against all the possible 
data subsets, as this requires unrealistic computing time. 
The compromise adopted is to evaluate the quality of the 
refinement on the basis of a randomly selected subset of 
the data. Use of Rt'~ee cross-validation in crystallography 
requires the omission of the reflections in the test set, for 
instance 10% randomly selected in the reciprocal space, 
Briinger (1992), from the refinement. In reality omission 
of about 1000 reflections is quite sufficient to provide 
a statistically meaningful sample. Omission of data in 
reciprocal space gives an unpredictable effect in real 
space. It reduces the convergence of the refinement and 
the quality of the refined model and introduces spurious 
features in the density map (Bacchi, Lamzin & Wilson, 
unpublished results). 

2. Method 

2.1. L i n e a r  H a m i l t o n  R - f a c t o r  test  

To preserve the completeness of the measured data, 
especially important in protein crystallography, a self- 
validation procedure is required. The question as to 

whether an improvement in R factor due to a decrease in 
the number of degrees of freedom is significant was first 
examined by Hamilton (1964, pp. 157-162; 1965), who 
formulated the problem as a linear hypothesis. Hamilton 
defined the R-factor ratio R = R 1 / R 2 ,  where R1 and R2 
are the r.m.s. R factors referring to two stages of the 
refinement with different numbers of linear constraints. 
From the null hypothesis that the two refinements do 
not differ significantly, 

Rb.n_m. u - {[b/ (n  - m ) ] F b . n _ m .  a + 1} 1/2, (1) 

where Fb.,,_,,.~ denotes the F-test analysis of the variance 
ratio for a b-dimensional linear hypothesis with n - m  
degrees of freedom and a probability ~ of rejecting the 
hypothesis if the second refinement gives no advantage 
compared to the first one (type I error). Usually refine- 
ment proceeds from a more to a less constrained model, 
i.e. from less to more parameters, and the hypothesis 
that the releasing of restrictions really improves the 
model should be tested. Hamilton's analysis refers to 
unconstrained refinement of m parameters against n data, 
giving n - m  degrees of freedom. Introducing b linear 
constraints on the parameters leads to a higher number of 
degrees of freedom (n - m + b). The two r.m.s. R factors, 
R2 and R1, are the relative estimated standard deviations 
of the distributions of the weighted F o -  F c  deviates for 
the two refinements, 

r.m.s. R= {[F_~wi(Voi-Fci)2] /[~"]~wiF~]}  1/2, (2) 

The probability o~ that the observed r.m.s. R-factor ratio 
R expresses a significant improvement is, 

P(F6,, ,_ m = 1 - Ix[(n - m ) / 2 ,  (b/Z)], (3) 

where l,,[(n - m ) / 2 ,  (b/2)] is the incomplete beta function 
and x = [(n - m ) / ( n  - m + bF)]. The behaviour of the 
function depends strongly on the numerical values of 
( n - m ) ~ 2  and (b/2), Fig. 1. If these are large, Ix 
approaches a step function centred at about 
x -- [(n - m + b ) / ( n  - m)]. This is always so in protein 
crystallography, and causes a sharp fall-off around the 
critical point R = [(n - m + b ) / ( n  - m)] 1/2. 

The Hamilton test requires a Gaussian distribution 
for the weighted deviates (wi)l/2(Foi-Fci). This can 
be assumed if the residual ~ - ~ w i ( F o i - F c i )  2 is mini- 
mized by least squares. The distribution remains essen- 
tially Gaussian when the weighted residual in intensities 
rather than in amplitudes is minimized (as implemented 
in S H E L X L 9 3 ) .  Ideally w i = ( l / a ~ )  but in practice the 
weighting scheme used in crystallographic refinement 
is often derived from a synthesis of empirical consid- 
erations, program defaults and rules of thumb. Such 
modified weighting schemes are supposed to compensate 
for experimental uncertainties and the presence of sys- 
tematic deviations in estimates of variances, particularly 
important for data from weakly diffracting crystals such 
as proteins. In terms of small-molecule crystallography 
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all protein data are weak. The weakness of purely 
statistical methods in the presence of systematic errors 
was clearly pointed out by Hamilton (1965) and the 
method proposed here is meant to be a guide to the 
crystallographer rather than an incontrovertible verdict. 

2.2. Extension for restrained refinement 

Hamilton limited his analysis to two refinements 
differing by the presence of b linear constraints. The 
more general case is now considered where the number 
of observations and the number of parameters change 
and restraints are used in a different manner. 

Consider two refinements with different degrees of 
freedom, Dfl and Df2, and the condition that Dfl > Df2 
and R1 >R2, which means that the first is more con- 
strained and gives a higher r.m.s. R factor. We want to 
know if the improvement in r.m.s. R factor is significant 
and does not merely reflect a reduction of the number 
of degrees of freedom. 

The number of degrees of freedom is defined as the 
number of observations minus the number of parameters. 
A linear constraint expresses an exact linear relationship 
between parameters as, for instance, x/a = y/b for an atom 
located on a binary axis perpendicular to c in P4222, 
or Ull = U22 = U33 and Ul2 = U23 -- Ul3 = 0 for isotropic 
refinement. In both cases introduction of the constraint 
lowers the number of parameters. 

By means of prior knowledge of the chemical and 
physical behaviour of the system, a restraint introduces 
a condition that the system must obey within a certain 
degree of confidence expressed by a weighting coeffi- 
cient. A restraint is an additional weighted observational 
equation. Either the introduction of N restraints or of N 
constraints results in an increase by N in the number of 
degrees of freedom of the refinement. 

However, some restraints are redundant or are applied 
only if certain conditions arise (e.g. anti-bumping) and 

these cannot be easily counted. Therefore, we introduce a 
restraints completeness weighting coefficient w to define 
the effective number of observational equations, 

N,,bs = Nrett + wN,.estr. (4 )  

In the two limiting cases w = 0 corresponds to com- 
pletely unrestrained refinement and w = 1 to a refinement 
where every restraint is treated as a full additional 
observation. 

Let Nrl and Nr2 be the number of reflections, S1 and 
$2 the number of restraints and P1 and P2 the number of 
parameters for the two refinements. The dimensionality 
(Dim) of the linear hypothesis is the difference between 
the number of degrees of freedom, 

Dim = Dfl - Df2 

= (Nrl + wl.S1 - P 1 ) - ( N r 2 +  w2.S2-P2) .  (5) 

Hamilton's linear hypothesis refers to the particular 
case where Nrl = Nr2, P1 = P2, $2= 0, wl = 1, w2 is 
indeterminate and Dim= SI. 

Since we are considering the case where RI >R2 
when Dfl > Df2, the condition Dim > 0 must hold. This 
implies that wi and w2 must satisfy the inequality, 

w2 < [(Nrl - N r 2  + P2-PI) /S2]  + wI(SI/S2). (6) 

In the two-dimensional space spanned by w l and w2, 
a straight line with intercept ( N r l - N r 2 + P 2 - P I ) I S 2  
and slope S11S2 separates the weight-allowed area from 
the weight-forbidden area, Fig. 2. Since S l lS2>0 ,  if 
(Nrl - Nr2 + P2 - P1)/S2 > 1 there are no restrictions on 
wl and w2. If the intercept is between 0 and 1, then the 
greater the value of SllS2 (i.e. the less restrained is the 
second refinement compared to the first), the greater the 
allowed value of w2 for a given w i. 

w2 w2 = w I 
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Fig. i. Incomplete beta function Ida,b) for different parameters. 
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Fig. 2. Weights for restraints. The shaded area represents the points 
(wl,w2) which satisfy the assumption that the dimensionality must 
be positive. 
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Table 1. Comparison of isotropic and anisotropic 
refinement for xylanase 1.5 ~4 

R factor't R.m.s. 
Reflections* Parameters Restraints (%) R factor+* (%) 

lsotropic 34460 7460 6450 14.0 20.3 
Anisotropic 34460 17770 20610 10.2 14.9 
R-factor ratio 1.37 1.36 

*This corresponds to the working set (95%). The free set contained the 
remaining 1814 reflections (5%). "{'R factor = (~--~ IFo i -Fcil)/(~Foi).  
:l:R.m.s. R factor is defined in (2). 

Under these assumptions, the probability that the 
improvement is significant can be calculated by a mod- 
ification of (3), 

P(FD,m. l~t~) = 1 -/x[(Df2/2),(Dim/2)]. (7) 

The critical point is, 

R = (Dfl/Df2) j/2 (8) 

The improvement is only significant if the ratio between 
the two r.m.s. R factors is greater than the ratio between 
the numbers of degrees of freedom. 

3. Application and discussion 

3.1. Evaluation of confidence 
The refinement of xylanase at 1.5 ]k (Lamzin, Dauter, 

Dauter, Bisgard-Frantzen, Halkier & Wilson, to be 
published) using SHELXL93 (Sheldrick, 1993) is now 
considered. Table 1 summarizes the experimental data. 
The experimental distribution of weighted deviates 
(wi)l/2(Foi- Fci) is Gaussian, Fig. 3. 

Two refinements with isotropic and then anisotropic 
description of atomic thermal motion gave a ratio 
R= (r.m.s. RiJr.m.s.  Raniso) = 1.36. This value is very 
close to the ratio of the conventional R factors, Table 1, 
showing that here the Hamilton test could equally well 
be applied to weighted r.m.s R factors or to conventional 

0.6" • Experimental 

Gaussian 
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0.4 

t--, 

=~ 0.3 

t.L 

0.2 

0.1 

.aLe A 
0.0 . . . .  

-3 -2 - 1 0 1 2 3 
Weighted deviates 

Fig. 3. Distribution of weighted deviates (wi)~/2(Foi-Fc,) for 
isotropic refinement of  xylanase. 

unweighted R factors. The Rfree factor improved to a 
smaller extent, from 16.6 to 13.5%, a ratio of 1.23. The 
number of reflections was equal for the two refinements. 

Since wl and w2 are not known, as a first approxi- 
mation they can be considered to be equal. Probability 
plots that the improvement is significant as a function 
of R for different but equal values of w l and w2 are 
shown in Fig. 4. The anisotropic model is significantly 
better than the isotropic, as for any value of wl = w2 the 
probability P(R = 1.36) is essentially unity. 

In the more general case, w2 must only obey inequal- 
ity (6) and the probability is expressed as a function 
of R, wl and w2. Fig. 5(a) shows that for R = 1.36 the 
improvement is significant for almost any value of wl 
and w2. However, there is a very small region at the 
bottom of Fig. 5(a) with w2 close to zero, corresponding 
to an essentially unrestrained anisotropic model, where 
improvement in the r.m.s. R factor is not significant. 
Thus, at this resolution restraints on the anisotropic 
model are essential. 

Suppose that a poorer ratio R= 1.21 (Raniso = 11.6, 
r . m . s .  Raniso = 17.0) had been achieved, Fig. 5(b). This 
would be significant provided wl is not lower than 
the threshold limit given by the borderline between 

• ..~-- 0 .6  

0 .4  

0 .0  " ' • - "" • 
1 . 0 0  

H i s o  = 0 . 7  W l s o  = 0 . 5  W £ S o  = 0 . 2 5  W £ s o  ~ = 0 . 0  
H a n l s . . 0 . 7  N a n l s = 0 .  S W a n £ s = 0 . 2 5  N & n £ s = 0 . 0  

f / 

. . . . . . . .  , . , I . . . .  J 
1.05 1 .10  1 .15 1 .20  1 .25 1 . 3 0  1 .35 .  1 .40  

R.m.s. R-factor ratio IExperimental 
! 
| ratio 

Fig. 4. Probability of  a significant improvement in R factor for different 
values of  wl = w2 for anisotropic refinement of  xylanase. 

0 w l  1 0 w l  1 0 wl  1 
(a) (b) (c) 

Fig. 5. Probability isolines (20, 40, 60, 80, 100%) of r.m.s. R-factor 
ratio, R, as a function of weighting coefficients in the case of  
xylanase: (a) for R = 1.36 (actual value obtained with anisotropic 
refinement); (b) for a hypothetically poorer improvement R = 1.21; 
(c) for R = 1.03. Label I indicates the region where the improvement 
is significant, 2 where it is not significant, 3 indicates impossible 
weighting schemes where inequality (6) does not hold. Shadowing 
indicates restrictions on wl and w2 according to (10). 
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areas 1 and 2 in the plot. On further decrease of R, 
Fig. 5(c), P(R) becomes more selective and for R ~ ! 
(i.e.r.m.s. Raniso ~ r . m . s .  Riso)  P(R) is high only for 
weighting schemes such that Dim ~ 0, where the number 
of degrees of freedom is equal for the two refinements. 
Under this condition the anisotropic model would be 
clearly shown not to be statistically meaningful. 

Table 2. Estimation of completeness of restraints for 
refinement of xylanase at 1.5 ~4 

Rcntical ,I, Wmin * 

Isotropic 1.11 0.95 
Anisotropic 1.20 0.35 

• Rcritical and Wmi n are defined in (9) and (10). 

3.2. The role of w l and w2 

As restraints are treated as extra observational equa- 
tions they should be included as a sort of real-space 
contribution in the expression of the r.m.s. R factor. This 
contribution, compared to the diffraction term, is not 
straightforward to evaluate and depends on the unknown 
coefficient w. However, it can be neglected if the ratio 
between the effective number of restraints, w.S, and 
the number of reflections, N~cfl, is low. This is justified 
provided the allowed ranges of w l and w2 are evaluated 
as described below. 

The assumptions made by Hamilton (1965) may not 
all be satisfied in real life. Evaluation of the effective 
contribution of restraints can be related to problems in 
counting the number of degrees of freedom (Rogers, 
1981). Introduction of the completeness coefficient w 
is aimed to take implicitly into account non-linearity, 
systematic errors, deviations from a normal distribution 
and uncertainty in the number and weights of the re- 
straints. If for any point of the (wi,w2) space a high 
probability is observed, Fig. 5(a), the improvement in 
the model is significant even if Hamilton's hypotheses 
are not completely satisfied. If not, Fig. 5(c), the test is 
less robust and care should be taken in considering the 
results. 

3.3. Estimation of the completeness of restraints 

wl and w2 can be estimated assuming that for a 
restrained model, the blind release of all restraints should 
not provide a significant improvement. Consider the 
refinement of a model M described by P parameters with 
N experimental observations and S restraints. We want to 
estimate the completeness w of the restraints, as defined 
in (3). A completely unrestrained refinement of M is 
carried out and it is assumed that the reduction in the 
r.m.s. R factor reflects only the reduction in the number 
of degrees of freedom. The extended Hamilton test can 
be applied in the form, 

Rcritical -> R[r.m.s. R(restrained)/r.m.s. R(unrestrained)]. 

From (8), 

Rcritical = { [Df(restrained)]/[Df(unrestrained)] } I/2 

= [ ( N -  P + wS)/(N- P)] i/2. (9) 

The limits for w are estimated as, 

[ ( N -  P)/S](R 2 - 1 ) < w < 1. ( 1 O) 

This provides an indication of the influence of the 
restraints on the refinement. A value of the lower limit 
for w, defined by the left-hand side of (10), close to 
or higher than 1 would indicate that too tight, or even 
incorrect, restraints have been applied. Their complete 
release produces a drop in the r.m.s. R factor higher 
than that expected from the decrease in Df alone. In 
other words if complete release of the restraints results 
in R greater than Rcritical from (9) for w = 1 the scheme 
of restraints may need to be reconsidered. 

For xylanase the results are given in Table 2. Taking 
into account (9) the permitted region of two-dimensional 
(wl, w2) space is reduced. Fig. 5(a) shows that for the 
observed ratio R of 1.36 all weights permitted according 
to (9) give significant improvement, while this is not 
the case for hypothetical poorer R, Fig. 5(b) and 5(c). 
Fig. 5(a) clearly shows that satisfactory restraints have 
indeed been applied to the anisotropic model and that it 
is statistically reasonable, while in the isotropic case the 
restraints seem to have been too tight. 

3.4. Estimation of the expectation value for Rm,,, 

Given that the free test set has been randomly 
selected, Cruickshank (personal communication) sug- 
gested that the expectation value for r.m.s. Rfre~ can be 
derived from Hamilton (1964, p. 130, equation 51), 

r . m . s .  Rfrcc = r.m.s. R[Nobs/(Nobs - Np~r~m)] I/2. ( 11 ) 

If we define the number of observations as in (4) and 
(5), this gives, 

r.m.s. Rfre¢ = r.m.s. R[(N+ wS)/(N+ wS-P) ]  1/2. (12) 

If w is not known the two limiting values w= 0 and 
w = 1 can be considered to define the range in which the 
r.m.s. Rt~  should lie, 

r.m.s. R[(N+ S)/(N + S-p)]l/2 

< r . m . s .  Rfree 

< r.m.s. R[N/(N - P)] 1/2 (13) 

The weights employed in the calculation of r.m.s. Rf~¢~ 
must account only for the experimental errors in the 
diffraction data, 

r.m.s. R,-~ = { [ ~ - ' ~ ( l / c r ~ ) ( F o i - F c i )  2] 

= [~_~(1/cr2)Foi2]} ,/2. (14) 
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For the isotropic refinement of xylanase the observed 
r.m.s. Rfr~ was 22.5%, within the range 22.5-23.0% 
estimated from (13). For anisotropic refinement the 
observed value was 19.9%, again within the estimated 
range 18.2-21.5%. The expected drop in Rfree can thus 
be predicted using Hamilton's analysis. This provides 
an additional means for estimating if the introduction of 
new parameters is statistically significant, i.e. results in 
the expected drop in Rf~.  Validation based on monitor- 
ing Rfrce alone is not able to reveal if an observed drop 
in Rfrce is significant. 

4. Conclusions 

Comparison between cross- and self-validation must 
take into account two factors: problems related to the 
omission of data and the demand of objectivity of 
the procedure. The use of Rfree cross-validation simply 
moves the problem from the significance of a drop in 
the R factor to a drop in Rfree. For xylanase the Rt~e~ 
for anisotropic refinement was lower than for isotropic 
but it was not obvious how much it should have fallen 
to demonstrate that the improvement was significant. 
If Rfree cross-validation is used, then evaluation of the 
expectation value for the r .m.s .  Rfree is important to 
avoid the introduction of subjectivity and bias. The 
self-validation procedure described here, based on the 
Hamilton test, overcomes problems of omitting data 
and provides a more objective monitor. An intrinsic 
drawback in Hamilton's approach to validation is that 
it is based on a linear hypothesis, assumes Gaussian 
distribution for the deviates and is designed to work in 
the absence of systematic errors. Strictly speaking, not 
all crystallographic restraints are linear but an approxi- 
mately linear behaviour can be assumed at least at the 
end of refinement. 

Robustness of the test in the presence of systematic 
errors in the estimation of weights and of the resulting 
non-Gaussian distribution of the residuals is achieved by 
the introduction of the restraints completeness coefficient 

w, which damps the instability in the R parameter by 
varying the formal number of restraints. Examination 
of the probability that the improvement in the model is 
significant as a function of (wl, w2) indicates which 
ranges of weights are allowed for introduction of a 
new set of parameters. More general self-validation 
procedures for protein crystallography, which unlike the 
Hamilton test do not demand Gaussian distribution of 
deviates, will be considered in future work. 

The authors are grateful to Professor D. W. J. Cruick- 
shank and Dr O. Carugo for valuable discussion, and to 
the referees for helpful suggestions. 
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